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Numerical methods are presented to study the temporally modulated Taylor-Couette flow 
problem. The first method uses Floquet theory to examine the transition from azimuthal flow 
to axisymmetric oscillating Taylor vortices. The second method uses a spectral initial value 
code to investigate the nonlinear development of these vortices. The properties of stability and 
convergence of the methods are discussed. To illustrate the significance of these methods new 
results about the generation of a vortex pair and the subharmonic response of stretched 
vortices are also presented. 0 1991 Academic Press, Inc 

1. INTRODUCTION 

(a) The Modulated Taylor-Couette Problem 

The physical problem which gives rise to the calculations and the numerical 
methods described in this paper is temporally modulated Taylor-Couette flow 
[ 1, 23. Our concern is the motion of an incompressible viscous fluid which is con- 
tained in the gap between two concentric cylinders which rotate at assigned angular 
velocities. We assume for the sake of simplicity that the outer cylinder is fixed and 
distinguish between a “steady” and a “modulated” Taylor-Couette problem. 

In the “steady” Taylor-Couette problem the velocity of the inner cylinder, 
measured by the Reynolds number Re,, is kept constant in time. If Re, is small 
enough the fluid exhibits steady azimuthal motion, called Couette flow. If Re, is 
increased above a critical value Re,, then Couette flow becomes unstable and a 
transition occurs: the radial and axial velocity components become different from 
zero and the flow takes the form of axisymmetric toroidal vortices, called Taylor 
vortices. 

In the “modulated” Taylor-Couette problem the velocity of the inner cylinder is 
not constant but varies periodically in time with assigned frequency and amplitude, 
i.e., Re,(t) =E,[l + s,(sin(w, t)]. Typically &I < 1 is chosen. If Re, is sufficiently 
small the flow is again purely azimuthal, in the form of a spatially damped - 
oscillating viscous wave. If Re, is larger than a critical value Re,, then the viscous 
wave loses stability and axisymmetric vortex motion onsets. Two interesting 
questions arise. The first is whether the modulation makes the flow more or less 
stable to the onset of vortices than the steady case. This leads to the study of the 
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threshold shift r = (El, - Re,,)/Re,, as a function of amplitude E, and frequency 
wi : at high frequency only a thin layer of fluid close to the inner cylinder is affected, 
while at low frequency the Stokes layer is large and we expect that the modulation 
has significant effects. The second question concerns the nonlinear development of 
the vortex flow above onset. The purpose of this paper is to describe the numerical 
tools used in Ref. [3] to answer these questions, a Floquet theory to study the 
onset of vortices, and an initial value code to investigate the nonlinear flow. 

(b) Previous Work and Plan of This Paper 

In a recent paper [3] we have argued that in the modulated Taylor-Couette 
problem there are disturbances which cause the bifurcation from Couette flow to 
Taylor vortices to become imperfect: for example, thermal differences across the 
gap, geometrical variations of the radii of the cylinders along their length, and the 
flakes used for the flow visualization. These imperfections are almost irrelevant in 
the steady state problem but have important consequences at low frequency 
modulation, because they prevent the radial and axial velocity components from 
decaying to very small values during the part of the cycle in which the Reynolds 
number is below critical. Our analysis, based on an amplitude equation approach, 
suggested an explanation for the disagreement that previously existed in the 
literature. On one hand there are the experiments of Thomson [4] and of Walsh 
and Donnelly [5] in with very large threshold shifts r = O(E,) were measured, 
showing that the modulation strongly destabilizes the flow; the same result was 
predicted by the linear stability theory of Carmi and Tustaniwskyj [6]. On the 
other hand, Hall [7] showed analytically, by means of expansions in both small - 
frequency and small amplitude of modulation, that in the narrow gap limit Relc 
is very close to Re,, and r = 0(&f). In support of Hall’s theory is the narrow gap 
limit computation of Riley and Laurence [S] and, more recently, the theory of 
Kuhlmann et al. [9] and the experiment of Ahlers [lo]. 

We found [3] that in a perfect bifurcation the destabilization is a small O(E:) 
effect, but a low enough frequency the imperfections take over. No matter how well 
the experimenter tries to control the imperfections, there exists a cutoff frequency 
below which these become significant and cause the threshold shift to become large, 
i.e., r = 0(&i). Calculation of this cutoff frequency showed quantitative agreement 
with the experimental value. We also modelled the imperfections by introducing 
suitable modifications in the initial value code which we describe in this paper and 
confirmed the result of the amplitude equation. The disagreement between the 
experiment of Walsh and Donnelly [S] and the recent work of Ahlers [lo] is 
explained by the fact that in the latter the frequency of modulation was above the 
cutoff below which the bifurcation becomes imperfect, whereas Walsh and Donnelly 
used a lower (dimensionless) frequency. 

To clarify the picture completely one has still to understand why, within the 
framework of the perfect bifurcation, the stability approach of Carmi and 
Tustaniwskyj [6] predicted too large threshold shifts at low frequency of modula- 
tion. For this purpose we have developed a linear stability theory around an 
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oscillating state (Floquet theory). Following Carmi and Tustaniwskyj, our theory 
does not assume the narrow gap limit, so that precise comparison with experimen- 
tal data is possible. Our results [3] are in good agreement with the calculations of 
Hall [7] and Kuhlman et al. [9], with the experiment of Ahlers [lo] and with 
some recent work of Walsh and Donnelly [ 111 in which it was discovered that the 
modulation of the outer cylinder strongly stabilizes the flow. 

The present paper contains a description of the numerical methods used in [3] 
to implement the Floquet theory; particular attention has been given to the tests of 
the code and the comparison with the work of Carmi and Tustaniwsky. The most 
likely source of the disagreement is found to be the time stepping. 

The other numerical methods which we shall describe in this paper refer to an 
initial value code used in Ref. [3] to study the nonlinear oscillating Taylor vortices. 
A number of numerical calculations have been performed in the past to study the 
steady axisymmetric Taylor-Couette problem. Meyer [12], Rogers and Beard 
[13], and Meyer-Spasche and Keller [14] used finite differences in the radial 
direction and Fourier expansions axially. Jones [ 1.51 considered the more general 
nonaxisymmetric problem and compared the relative merits of a full spectral 
approach in both radial and axial directions with methods which are spectral in one 
direction and finite difference in the other. Initial value codes for nonaxisymmetric 
Taylor vortices based on spectral methods have been developed by Moser, Moin, 
and Leonard [16] and Marcus [ 173. Marcus investigated the use of a fractional 
time step scheme using Chebyshev polynomials in which each time step was split 
into three independent corrections for the nonlinear terms, the pressure and 
the viscous term. The time splitting method was used successfully in cylindrical 
pipe flow [18], but when calculating Taylor-Couette flow problems arose from 
imposing the continuity constraint on the second intermediate step. These problems 
were eliminated by Marcus [17] by using a Green’s function method. Moser, 
Moin, and Leonard [16] used spectral expansions which inherently satisfied the 
boundary conditions and the continuity equation. The resulting banded matrices 
were solved at each time step. A method for temporally modulated axisymmetric 
Taylor flow, based on a finite difference simulation of the Navier-Stokes equation, 
was developed by Kuhlmann et al. [9]. The method which we shall present in this 
paper to study temporally modulated Taylor-Couette flow is based on Chebyshev- 
Fourier spectral expansions. The matrices which drive the evolution can be 
computed in advance of the time integration. 

The plan of the paper is the following. In Section 2 we shall introduce the nota- 
tion and the equations of motion in their dimensionless form. In Section 3 we shall 
describe the initial value code which we have developed to solve these equations, 
together with a discussion of its properties of stability and convergence. In Sec- 
tion 4 we shall present the Floquet theory, study the effect of changing the mode 
truncation and the time step and make comparison with Carmi and Tustaniwskyj’s 
work [6]. In Section 5, to illustrate the significance of our numerical methods, we 
shall present some new results: the use of the time modulation to study the genera- 
tion of a vortex pair and the subharmonic response of stretched vortices. 
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2. THE EQUATIONS OF MOTION 

Let us consider a fluid of given density p and kinematic viscosity v which is con- 
fined between two infinitely long concentric cylinders. The inner and the outer 
cylinders have radii R, and R,, respectively. In the previous section we restricted 
the discussion to modulations of the inner cylinder with the outer cylinder at rest, 
but now we consider the more general situation in which both cylinders rotate at 
assigned angular velocities Qi(t) = a,( 1 + E, sin ~,t), i= 1, 2. The flow is described 
by the incompressible Navier-Stokes equations 

au/at + (U .v) u = - ilp vp + v VU 

V.u=Q, 

(2.1) 

(2.2) 

where p is the pressure and the velocity field u has components (u,, uV, u,) in cylin- 
drical coordinates (r, cp, z). The nonslip boundary conditions are U,(Y = R,) = 
u,(r=R,)=~~(r=R,)=u,(r=R,)=O, ~~(r=R,)=fi?,(t)R,, and u,(r=R,)= 
Q,(f) 4. 

The experimental evidence shows that modulated Taylor flow is axisymmetric 
after the onset. We seek solutions of (2.1), (2.2) which do not depend on the angle 
cp and introduce the stream function Y 

u, = - yr ayljaz, U, = l/r aY/& 

which automatically guarantees that (2.2) is satisfied, and 
Z = (curl u)V/r, 

It is convenient to write the total azimuthal velocity as U, = 
instantaneous Couette flow U: = a(t) r + b(t)/r, with a(t) and 
boundary conditions: 

(2.3) 

the potential vorticity 

(2.4) 

I.(, + v, where u: is the 
b(t) determined by the 

a(t) = R:%(t) - R%(t) 
R;-R: ’ 

b(t) = R:R:CQ,W -Q,(t)1 
Rf-R: 

(2.5) 

In this way the boundary conditions for v are simply v(r = R,) = v(r = R,) = 0 
and the boundary conditions for Y are chosen to be Y(r = R,) = Y(r = R,) = 
Y(aY/&)(r = R,) = (dY/&)(r = R,) =O. 

We now make the equations of motion dimensionless. Let 6 = R, - R, be the gap 
width and q = RI/R, the radius ratio. We introduce the following variables 
t -+ v/Pt, r-+(r-R,)/h=x, 2 --+z/s=[ and fields v + v/60, Z+ vlR2d2Z, 
Y -+ vR, Y and u”, + v/&i. 

The dimensionless velocities of the inner and the outer cylinder are the Reynolds 
numbers Re,(t)=Qi(t) R,s/v=z,(l +aisinw,t), i= 1, 2, where oi are now 
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dimensionless frequencies and T, = 2n/w, are the respective periods. It is also com- 
mon in the literature to use the Taylor number Ta = 2Q:Li4(q2 - p)/[(l - q2) v’] 
together with the ratio ,u = 52,/Q,. 

We conclude that the dimensionless axisymmetric incompressible Navier-Stokes 
equations for Z, v, and cp and the boundary conditions are 

azjat = L,(Z) + N,(Z, v, Y) (2.6) 

au/at = ~~(24 + N,(u, Y) + f-(t) (2.7) 

Z-L,(Y)=0 (2.8) 

v=~=aajax=o atx=Oandx=l. (2.9) 

L,, L,, and L, are linear operators defined by 

LI=a2/ax2+3(t-vl)/salax+a21ai2 

~~ = a2/a2 + ( i - vl ys a/ax - ( i - v )2p + a2jap 

Lo = -i/s2 a2/ax* + (1 -+3 a/ax- iis a2/ac2, 

(2.10) 

(2.11) 

(2.12) 

where s = (1 - q) x + q. N, and N, are nonlinear operators defined by 

N,(z, U, y) = 2(1 - +2 (24; + II) av/ay - I/S a(ul, zya(x, g (2.13) 

N2(~~)=-1/~a(vl,v)/a(x,i)+(1-vl)/s(v/s+2~)ay/ai, (2.14) 

where we have used the definition a(f; g)/a(x, y) = af/ax ag/ay - aflay Bg/a.x; the 
instantaneous Couette flow is ZAP = A(r) s + B(t)/s with 

A(t) = CRe2(t)- ul Redt)l B(t)= r U%(t) - r Re2Wl 
(l-r/2) ’ (1 -s2) . 

(2.15) 

Finally F(t) is a known forcing term 

F(t) = ( -OIEIRe,(q/s-ys) cos(0, t)-02&,E2(s-?f2/s) cos(o,t))/(l -$). 
(2.16) 

The initial value problem (2.6) to (2.9) is completely specified by assigning 
the radius ratio PI, the wavenumber CI, the parameters zj, E,, wi (i= 1, 2) which 
determine the Reynolds numbers as a function of time, and the initial conditions 
for Z, v, and Y. 

For comparison with experimental data we often choose a = 3.13, close to the 
wavenumber of the first mode to become unstable in the steady Taylor-Couette 
problem: there is in fact experimental evidence that the wavenumber does not 
change significantly in the modulated case. This value of CI corresponds to a Taylor 
vortex cell of wavelength A = 2rc/c( almost equal to twice the gap width. The cell 
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consists of a pair of vortices rotating in opposite directions. So as to make com- 
parisons with the work of Carmi and Tustaniwskyj [6] we often adopt their choice 
of the geometrical factor 6/R, = 0.444, i.e., radius ratio q = 0.693. 

3. THE INITIAL VALUE CODE 

In this section we describe the initial value code developed to solve Eq. (2.6) to 
(2.9). It is known that in the solution of similar equations [ 191 there is the difficulty 
of avoiding the numerical instability associated with the radial diffusion. The linear 
operators L,, L,, and L, must be treated implicitly: we use the second-order 
accurate Crank-Nicholson method. For the nonlinear operators N, and N, we use 
the explicit Adams-Bashforth second-order method. The external force F(‘(t) is 
integrated exactly. The relation between 2 and cp and the boundary conditions are 
enforced at each time step. Let the subscript n denote any variable at time t” = n At, 
where At is the time step. We have then 

Z ?7+ 

where 

1 

+$ (3N2(u”, YH) - Nl(v” 

-L7Yn+‘=0 

y+’ =o at x=Oandl 

a!P+‘/i3x=0 at x=Oandl 

V n+l=0 at x=Oand 1, 

Y-l))+ H (3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

- 

H= - (1 -q’) *(V/S--VS) [sin(wit”+‘)-sin(w,t”)] 

- 
-a(~-~2/~)[sin(~1f”+‘)-sin(WzP)]. (3.7) 



TRANSITIONS AND TAYLOR VORTICES 181 

We expand Z, ~7, and Y over truncated Chebyshev-Fourier sums 

m=NF k=NC 

ax, c-3 t”) = c 1 z;, sinbd) Tk* I(X) 

m=l k=l 

m=NF k=NCiZ 

Y(x, (, t”) = 1 c YL, sin(mcti) TjJ- 1(x) 
m=l k=l 

m=NF+I k=NC 

44 L t”)= 1 ,;, vzk cos((m - 1) cri) TX- ,(x). 
m=l 

(3.8) 

(3.9) 

(3.10) 

Here TX(x) is the kth modified Chebyshev polynomial defined in the interval 
0 G x 6 1. At time r” the solution of the Navier-Stokes equations is represented by 
theN=NC*NF+NC*(NF+l)+(NC+2)*NFcoefficientsZ~,,v~,,and Yk,. 
N equations are needed for these coefhcients. 

Equations (3.1) and (3.2) and (3.3) are evaluated respectively at NC + 2, NC - 2, 
and NC points in the radial direction x. A set of M such collocation points is 
defined as x, = i [l + cos(m~/(M+ l))], m = 1, . . . . M. Then in each equation and 
boundary condition we set the coefficient of each Fourier mode cos(mac) or 
sin(mcl<) equal to zero. Before doing this, however, we have to rearrange the non- 
linear quantities N, and N, and express them as Fourier sums; for example, a non- 
linear term of the form [C;af” a,(x) sin(ma[)] times [C;:r b,(x) cos(ma[)] 
can be written as [Czz” c,(x) sin(mmc)], where the new coefficients c,(x) can be 
easily obtained from a,(x) and b,(x). Higher order terms, the first of which is 
proportional to sin(M+ 1) a[, are ignored. In this way we obtain respectively 
NF* (NC-2) (NF+l) * (NC-2) NF* (NC+2), 2*NF, 2*NF, and 2*(NF+l) 
relations from (3.1), (3.2) (3.3), (3.4) (3.5) and (3.6) and the total number of 
equations equals the total number of unknowns. 

Equations (3.1) to (3.6) can be written in matrix form 

PX”+1=QX”+At/2[3Y”- Y”-‘]+H”, (3.11) 

where P and Q are square matrices of size N which depend on n, ~1, At, NC, and 
NF but are independent of time and of the Reynolds numbers. X” is a vector of 
length N which contains the Chebyshev-Fourier coefficients of the fields Z, v, and 
Y at time t”. Y” is a vector of length N which depends nonlinearly on in Z, v, and 
Y at time t”, and H” is a known vector of length N which depends on time t”. The 
algorithm for the initial value code is then 

W+- y”-‘)+H” (3.12) 

Xn+l=(P-l*Q)X”+(P-‘) w. (3.13) 

The matrices P-’ * Q and P-’ are computed in advance of the time integration 
and are stored in files. Since each time step requires the knowledge of the state of 
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the system X at two previous times, we use Euler’s method to compute Xnfl, i.e., 
At/2(3Y”- Y+-l) in (3.12) is replaced by At Y”. At each successive step first one 
finds the nonlinear terms Y” and Y”-’ and the known force H”, which together 
form the vector W. Then the desired vector X”+ ’ is obtained from (3.13) by 
summing together the results of two multiplications of a precomputed matrix times 
a vector. A major time saving factor is that the matrices P -I * Q and P ~ ’ have a 
structure with many empty blocks; for example, P-’ * Q has only (2NF+ 1) NC * 
NC + NF * NC * (NC + 2) nonzero elements instead of N2. 

The starting condition X0 for the initial value code can be obtained in a number 
of ways. Typically one uses an existing vector X which was stored at the end of a 
previous run at the same or at different Reynolds number. One can also use a rough 
guess for X corresponding to z) = sin nx and Y= x*(x- 1)2. A third way is the 
following: we have developed an independent spectral code to study the linear 
stability of steady Couette flow. We do not describe this linear code here because 
it is similar to a method already published [20]. The eigenfunctions corresponding 
to a chosen eigenvalue obtained from the linear code can be used, together with an 
arbitrary amplitude, as starting condition X”. 

Direct calculation of the eigenvalues of the matrix Pm~ I * Q confirms that all have 
magnitude less than one, so our method is linearly stable and does not suffer from 
the numerical instability associated with the diffusion operator mentioned before. 
What limits the size of the time step is the Courant instability of the nonlinear part; 
typically in the range of interest of the parameters we find instability for At > 0.02, 
and the actual At which we use to calculate modulated flows is much smaller to 
provide us with the desired accuracy. 

A number of tests against known results have been performed: 
(1) Growth rates and converges in At. We use the steady state linear stability 

program just mentioned to compute the growth rate co at given 7, CI, and Re,. We 

TABLE 1 

The Growth Rate 0 Computed by the 
Initial Value Code as a Function of the 

Time Step dl at 6/R, = 0.444, G( = 3.13, Re, = 80 
with NC = 15 Chebyshev Polynomials 

0.01 -0.574 x 10 ’ 
0.005 -0.144 x 10-l 
0.002 -0.230 x 10 ’ 
0.001 -0.576 x 10 -3 
0.0005 -0.144 x 10-j 
0.0002 -0.231 x 10 -4 
0.0001 -0.586 x IO- 5 

Note. u. =0.430108693 is the growth rate 
obtained from the steady state linear stability code. 



TRANSITIONS AND TAYLOR VORTICES 183 

take the resulting eigenfunction with an arbitrary small amplitude as starting condi- 
tion X0 for the initial value code. To be consistent with the linear stability approach 
we take NF= 1 and compute the value of a velocity component as a function of 
time, e.g., u,(x = 0.5, [ = 0, t). The growth rate (T = l/(tz - t,) log, u,(z~)/u,.(?,) 
between two arbitrary times t, and t, is calculated and compared to co. Some 
results are shown in Table I: the relative difference 60 = (o- ao)/oo is about 
lop5 % at the smallest time step At = lop4 used. Note that 60 scales with (At)‘. We 
now make a comparison with published work. Krueger et al. [21] reported that at 
rl= 0.95 steady Taylor vortices onset at wavenumber a = 3.128 and Taylor number 
Ta = -4aQ2, h4/v2 = 3509.9. For parameters of these values our linear stability code 
finds that the growth rate is indeed close to zero, go = -0.7017 x 10P3. The initial 
value code gives the same growth rate, the relative difference being only 0.04%. 
Another test is the comparison with Marcus [ 171; at q = 0.5, CI = 3.161, and steady 
Reynolds number Re, = 74.924 he found the growth rate nA = 0.035637 using 
a fourth-order solver and cB= + 0.035636 using his initial value code. For 
parameters of these values both our linear stability code and the initial value code 
give, after conversion into Marcus’ dimensionless units, (T = 0.035639, with a 
relative difference of only 0.008 % from oa and 0.006 % from cA. 

(2) Steady state Taylor vortex flow and convergence in NC and NF. We 
compute the nonlinear steady state Taylor vortex flow and compare the results with 
the published values of Jones [ 151. Useful measures of the strength of the vortices 
are the radial velocity components u, and the torques G, and G, on the inner and 
outer cylinder, given by 

G,= -2(1+ 5) 1 
&(x=0) 

il(l+v) +(TG‘,-?7E2p 

G =-2(f+5)+~ _ 1 
2 *(x=1), 

dl+~) ‘12(Re,-~Re2)~x 

(3.14) 

(3.15) 

- - 
where 5 = [E,E, sin(o, t) - qRe,s, sin(o,t)]/Re, - 1]z2). G, and G2 have the 
same magnitude. To obtain the dimensional torques from (3.15) and (3.16) one 
multiplies G, and G, times 2nhvp(Q, -0,) R:6, where h is the length of the 
cylinders. Table II shows steady state values of u,, G,, and G, as a function of 
increasing number of Chebyshev polynomials NC and Fourier terms NF. The 
results converge towards the values reported by Jones. Note that G, is different 
from G,, but (G, - G,)/G, becomes smaller if more Chebyshev polynomials are 
used to take care of the asymmetry between the flow at the inner and at the outer 
boundaries. The asymmetry becomes less in the narrow gap limit q -+ 1 (in the 
present test ye = 0.5). At higher values of Reynolds number more polynomials and 
Fourier terms are needed to obtain the same accuracy and to represent the 
increasing asymmetry between the outflow and the inflow at [ = 0 and i = 27+x. 
Fortunately the phenomena we are interested in happens at moderate Reynolds 
numbers, around Re,,( 1 + Ed), where E] < 1, and so we never need a high number 
of polynomials. 
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TABLE II 

The radial Velocity u, at the Point x=0.5, i =0 and the Magnitude 
of the Torques G, and G, on the Inner and Outer Cylinders 

Ta NC NF u, G, 

3500 7 3 4.264242 2.805078 2.809117 1.44 x 10 -? 
3500 13 5 4.233583 2.812993 2.813026 1.15 x tom5 
3500 13 7 4.233625 2.812993 2.8 13026 1.15 x tom5 
3500 13 9 4.233625 2.812993 2.813026 1.15x10 5 
3500 15 5 4.233584 2.813015 2.813019 1.87 x 10m6 
3500 15 7 4.233584 2.813015 2.813010 1.87 x 1om5 
3500 1s 9 4.233626 2.813015 2.813010 1.87 x lO-h 

7500 10 4 17.832047 3.591168 3.609267 5.04 x loml 
7500 12 4 17.832587 3.586544 3.585045 4.18 x lo- 4 
7500 1s 4 17.832865 3.586549 3.586517 8.98 x lo-’ 
7500 15 8 17.969645 3.587657 3.587622 9.83 x lo-’ 
7500 1s 10 17.970411 3.587657 3.587622 9.83 x 10 mh 

15000 12 4 33.644945 4.158712 
15000 15 4 33.643340 4.155552 
15000 IS 8 33.656768 4.186246 
15000 15 10 33.677391 4.186250 

4.167972 2.23 x IO-’ 
4.153110 5.88 x 10 4 
4.183858 5.70 x 10 m4 
4.183863 5.70 x 1om4 

Note. Computed by means of the initial value code at 1 =O.S, z = 3.1631, n=O, and 
Taylor numbers 3500 (Re, z 72.5) 7500 (Re, z 106.1), and 15,000 (Re,=lSO) at different 
truncation NC and NF of Chebyshev polynomials and Fourier terms. Jones’ results [ 151 are: 
u,=4.23363 and G=2.813015 at Tu= 3500; a,= 17.9705 and G=3.5878 at Ta=7500; 
a, = 33.6805 and G = 4.1864 at Ta = 15,OQO. 

It is interesting to look at the contribution of the various Fourier components 
u:(x) to the total radial velocity u,(x, [) = C;:y u:(x) cos(m~i) for a typical 
steady state Taylor vortex flow: in Fig. 1 one verities that U; drops smoothly over 
orders of magnitude from m = 1 to m = NF inclusive. We do not apply any correc- 
tions for aliasing effects. 

(3) Viscous wave. At low enough Reynolds number the solution of 
the Navier-Stokes equations (2.6) to (2.9) has only an azimuthal velocity com- 
ponent, which can be easily calculated. Let the velocities of the cylinder be 
vj(t)=Ri[Qi+Aicos(ot)], i= 1, 2. Then the total azimuthal velocity is 
V(r, t) = V,(r) + u(v, t), where V,(r) is the mean Couette flow V,(r) = & + B/r (the 
overbar indicates the time average) and 

~(~,t)=RealC(R,A,C~,(x,)K,(x)-K,(x,)~,(x)ll~ 

+R,A,CK,(x,)~,(x)-~,(x,)K,(x)ll~} erw’l, (3.17) 

where x = eini4 J/ w v r and A = K,(x,) Z,(x,) -KI(x2) Z,(x,). K,(x) and Z,(x) are 
the modified Bessel functions of the first kind. The initial value code can reproduce 
this time dependent flow well; we choose q = 0.5, E = 3.1631, and modulation with 
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FIG. 1. Relative intensity log,, u;/u~,, of the Fourier component uy of u, as a function of m, 
calculated at the point x = 0.5, [ = 0 at 6/R, = 0.444, LX = 3.13, with NC = 15 and NF= 10. Crosses: steady 
state flow at Re, = 86.025731; II,, = 5.6385 is the steady state radial velocity. Circles: modulated flow at 
&, = 86.025731, E, = 0.3, and T, = 0.5 computed with N,= 1250; u,, = 9.9028 is the peak radial velocity 
during a cycle. 

Re, = 40, s1 = 0.5, and T, = 2. With NC = 16 Chebyshev polynomials and At = lop3 
we find that at the point x = 0.5 the initial value code agrees with the exact solution 
within 10-4-10-5 %. 

(4) Modulated Taylor-Couette flow: Convergence in At, NC and NF. We 
choose Carmi and Tustaniwskyj’s radius ratio [6] given by b/R, = q/(1 -q) = 
0.444, and consider oscillations at Re, = 86.025731, sI =0.3 with period T, = 1.5 
and wavenumber CI = 3.13. We examine the convergence in At at fixed NC = 10 and 

14. 052 

0 0 0 
0 

14. 050 '. 0 

0 
14. 048 

14. 046 

0 

14.044 .. 

14.042 I..... 

-4.0 -3.5 -3.0 -2.5 -2.0 -1.5 

FIG. 2. Maximum value of U, during a cycle as a function of log,, At, where At is the time step 
calculated at the point x = 0.5, [ = 0 with fixed NC = 10 and NF= 6. The oscillations are at 6/R, = 0.444, 
a=3.13, =,=86.025731, E~ =0.3, and T, = 1.5. 
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TABLE III 

Oscillations at 6/R, =0.444, cc=3.13, E, =86.025731, E, =0.3, and T, = 1.5 

NF 
NC 4 5 6 I 8 9 

8 13.9906 14.0143 14.0199 14.0211 14.0214 14.0214 
9 14.0163 14.0414 14.0473 14.0486 14.0489 14.0489 

10 14.0206 14.0454 14.0511 14.0524 14.0526 14.0521 
12 14.0192 14.0439 14.0496 14.0509 14.0511 14.0512 
13 14.0193 14.0441 14.0498 14.0510 14.0513 14.0513 
14 14.0193 14.0440 14.0497 14.0510 14.0513 14.0513 
15 14.0193 14.0440 14.0497 14.0510 14.0513 14.0513 

Note. The maximum value of U, during a cycle is calculated at the point x = 0.5, i = 0 at 
the fixed time step dr = 0.001 as a function of the number of Chebyshev polynomials NC and 
Fourier terms NF. 

NF= 6. The results for the peak value of the radial velocity during an oscillation 
at the point x = 0.5, [ = 0 are summarised in Fig. 2. The two entries at the smallest 
time steps u,= 14.05124 and u,= 14.05127 differ by only 0.0002%. To study the 
convergence as a function of NC and NF we keep At = lop3 fixed; the results are 
showed in Table III. 

In our previous paper [3] we have shown that calculations of velocity com- 
ponents as a function of time have very good quantitative agreement with the 
measurements of Ahlers [lo] and reproduce the characteristic unharmonic shapes. 

4. THE FLOQUET THEORY 

In this section we describe the Floquet theory which we use to determine the 
stability of Taylor-Couette flow. Floquet theory is essentially a linear stability 
theory for an unperturbed state which is periodic in time. Let Ui (i= 1, . . . . N) be a 
set of N modes which represent independent perturbations from the oscillatory 
state. These modes are orthogonal and normalized and form a complete set, in the 
sense that any state of the system can be uniquely described by the Ui. We integrate 
each mode Uj = U,(O) from time t = 0 to t = T, the period of an oscillation. By 
expanding each final mode Ui( T) over the original set { U, (0)) we construct the 
matrix C: 

i=N 

U,(T)= c Cj;U;(0) (j= 1, . . . . N). (4.1) 
i= 1 

Let us assume that there is a solution of the form Y(t) = e”‘F(t), where F is 
periodic, i.e., F(0) = F(T). Then Y(T) = e’?P(O): We expand Y(t) over the set 
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{U,}; we have Y(O) = CjbjUj(0) and Y(T) =Z;bjlJj( T) = .Z’jC,b,CjiUi(0). Since 
Y(T) = euTC,bi Vi(O), we obtain .ZiUi(0)[bieuT- ,EjbjCji] = 0. But {Vi(O)} form a 
complete set; we have biebT- C,b,C,, = 0 for each i. If we introduce the transposed 
matrix D = C’, the vector B= (b,, . . . . bN) and the unit matrix Z we can write 
(D -e”‘Z) B= 0. A nontrivial solution exists if det(D - euTZ) = 0. This relation 
determines N eigenvalues. The growth rate is 0 = (l/T) log, /1 where n is the largest 
eigenvalue. If l/ii > 1 then modulated Couette flow is unstable. 

We implement the Floquet theory in the following way. We recall that the state 
of the system is described by a vector X containing the Chebyshev-Fourier coef- 
ficients of the expansions of 2, u, and Y. Since we are interested in a linear theory 
we take NF= 1 in these expansions. Let the perturbation of the azimuthal velocity 
v be 

6v, = T,*p 1(x) - T,*+ 1 (x) (n = 1, . . . . NC- 2). (4.2) 

These NC- 2 independent modes form a complete set in the space of functions 
S, = {f(x) such that f(x)=Cj:;“‘&Ti*_,( x and f(O)=f(l)=O} to which u ) 
belongs. We make the modes 6u, orthogonal by means of the Gram-Schmidt 
procedure and then normalize them. To do this we need to define the inner product 
(f, g) in S,. We have 

n=M rn=N n=M m=M 

(.Lg)= c 1 fngm(T,*-,> TrT- I)= 1 c fngmhm-1, (4.3) 
II = 1 m=l n=l m=l 

since(T,*,T,*)=S-:~:,dx(x-~~)~“~T,*(x)T,*(x)=6,,h,,whereh,=~/2ifn=O 
and II otherwise. We call U,“,(x) (n = 1, . . . . NC - 2) the set of resulting perturbations 
of v for which (Vi, U>)=S,,. 

The perturbations of the stream function are 

6Yn(x) = T,*- I(X) + CI T,*+,(x) + ~2 T,*+,(x) 

with 

(n = 1, . . . . NC- 2) (4.4 

(n - 1)2 - (n - 3)2 (n+1)2-((n-l)2 
“=(n+3)‘-(n+l)2~ c2 = (n + 3)2 - (n + 1)’ 

(4.5 

These NC- 2 independent modes are a complete set in the space of functions 
S2 = {f(x) such that f(x) = CjI;““‘f;Ti*_ 1(x) and f(0) =f( 1) = (d’/dx)(O) = 
(@,Ux)(l)=O} h’ h w ic we use to describe Y. Proceeding in the same way as we did for 
60, we construct the functions UT(x) (n = 1, . . . . NC- 2) such that (Ur, U,‘) = d,,,. 
Note that for each of the perturbations of 6YJx) we have to adjust the vorticity 
according to (2.8) by computing the corresponding 6Z,(x). 

We use a linearized version of the initial value code described in Section 3 to 
integrate each of the (NC- 2) + (NC- 2) perturbations U” and U’ in time from 
t = 0 to t = T. The coefficients of v and Y in the final state vector X are then used 
to construct the matrix D. The largest eigenvalue /i of D, obtained by means of a 
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TABLE IV 

The Growth Rate 0 Computed by Means of the Floquet Theory Code as a 
Function of the Time Step At and the Total Number of Steps NT at 

6/R, = 0.444, r = 3.13. Re, = 80 with NC= 15 Chebyshev Polynomials 

NT Al 50 100 200 1000 2000 

0.01 3.24x 10-l 1.91 x 10-l 1.24 x lo-’ 7.07 x lo-* 6.41 x 10m2 
0.005 1.48x10-’ 8.10~10~~ 4.79x IO-* 2.11 x10-* 1.77~10-~ 
0.001 2.74 x lo-* 4.40 x 10 -* 7.28 x IO-’ 1.92 x 10-s 1.25 x 10-j 
0.0001 2.72 x lO-3 1.36 x 1O-3 6.79 x lO-4 1.42 x 10 -’ 7.30x lo- 5 

Note. The tabulated results are in the form (o-uo)/cro x 100, where 
e,, = 0.430108693 was obtained by means of the steady state linear stability code. 

NAG routine, determine the stability of the flow. A number of checks of the 
Floquet theory have been performed: 

(1) Steady state problem. We use the known results about the stability of 
steady Taylor-Couette flow to test the Floquet theory code: we set T equal to an 
arbitrary time T= N, At and compute the growth rate cr. At h/R, = 0.444, c( = 3.13, 
and Re, = 80 the steady state linear stability program mentioned in Section 3 gives 
crO = 0.430108693. The results of the Floquet theory at NC= 15 are shown in 
Table IV as a function of the time step At and the total number of steps N,. The 
agreement is good: CJ + co at large N,. The last two entries at the smallest At differ 
by only 7.2 x lo-‘%. 

(2) Modulated case, convergence as a function of NC and At. We study 
Taylor-Couette flow modulated at E, = 78, E, = 0.5 at the same radius ratio and 
wavenumber as before. The largest eigenvalue /1 is computed as a function of the 
number NC of Chebyshev polynomials and time step At. The results corresponding 
to two choices of the period of oscillation T, = 0.125 and T, = 1.5 are shown in 
Table V and VI. From the entries with the smallest At one can see that halving the 

TABLE V 

The Largest Eigenvalue n Computed by Means of the Floquet Theory Code 

NC 
Nr 100 200 400 800 1600 3200 

10 0.98533 0.98589 0.98502 0.98606 0.98607 0.98607 
14 0.98533 0.98589 0.98602 0.98606 0.98607 
18 0.98533 0.98589 0.98602 0.98606 0.98607 

Note. 6/R, = 0.444, c( = 3.13, &, = 78, F, = 0.5, T, = 0.125 as a function of the number of 
Chebyshev polynomials NC and the number of time steps in a cycle N,. 
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TABLE VI 

The same as in Table V but T, = 1.5 

NT NC 100 200 400 800 1600 3200 

8 0.9709 0.9879 0.9922 0.9933 0.9936 0.9936 
10 0.9700 0.9869 0.9912 0.9923 0.9926 0.9926 
14 0.9700 0.9869 0.9912 0.9923 0.9926 
18 0.9700 0.9869 0.9912 0.9923 

time step causes a change of n of only 0.0001% at the higher frequency T,. At the 
lower frequency T, the corresponding change is 0.0005%. 

We have mentioned in the Introduction that the Floquet theory gives results 
different from Carmi and Tustaniwskyj’s [6]. They examined oscillations with 
amplitude s1 = 0.5 and wavenumber tl= 3.13 at radius ratio given by 6/R, = 0.444; - 
at their lowest frequency (0, = 2) they predicted Y = (Re,, - E,,)/z,, = - 30.6 %, 
while we find only r = -0.8%. To understand this order-of-magnitude disagree- 
ment we investigate at first the effect of severe mode truncation in our numerical 
code, because Carmi and Tustaniwskyj employed typically only three or four 
Galerkin modes in their calculation while we use NC = 15 Chebyshev polynomials. 
At w, = 2, with decreasing NC= 7, 6, 4, and 3, we obtain respectively E,,= 78.05, 
77.88, 78.45, and 71.67 which should be compared with the critical Reynolds num- 
ber for the onset of vortices in the steady state problem Re,, = 78.7173. We con- 

TABLE VII 

Effect of Increasing the Time Step 

N, 

200 1000 78.63 
200 500 78.63 
200 100 78.64 
200 60 78.67 
200 30 78.77 

2 1600 78.02 
2 800 78.06 
2 100 64.79 
2 60 42.06 
2 30 23.90 

Note. Critical Reynolds number E,, 
for modulated flow at 6/R, =0.444, 
E, =O.S as a function of number N, of 
steps per cycle at various frequencies or. 
NC = 15 Chebyshev polynomials have 
been used. 
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elude that the reduction of the number of modes fails to reproduce Carmi and 
Tustaniwskyj’s large destabilisation. We then turn our attention to the time step- 
ping. Carmi and Tustaniwskyj introduced a scaled time r = ao1 t and performed the 
time integration with N,= 30 steps per cycle, where N,= T,/At. We examine the 
effect of running our numerical code with a time step much larger than discussed 
in our previous tests of convergence. The results are shown in Table VII. At high 
frequency of modulation (oi = 200) the small number NT of steps per cycle used by 
Carmi and Tustaniwsky gives a fair result. However, to achieve convergence at low 
frequency of modulation (w, = 2), we need a much bigger N,; if N, is too small, 
a large bogus reduction of the critical Reynolds number is obtained, comparable to 
the reduction reported by Carmi and Tustaniwskyj. This bogus effect arises because 
at low frequency of modulation the amplitude falls to very low values during part 
of the cycle; with a large time step the numerical solution “jumps” across this part 
of the cycle too fast and fails to compute the very small velocity with enough 
accuracy. On the contrary, at high frequency of modulation, the amplitude does not 
fall to small values and the problem does not occur. We suspect that Carmi and 
Tustaniwskyj checked the time step at high frequency only and were misled by the 
result and by their introduction of a dimensionless time scaled with the frequency. 

5. APPLICATIONS OF THE INITIAL VALUE CODE TO STRETCHED TAYLOR VORTICES 

In Section 2 we have mentioned that the axial wavenumber c1 has the typical 
value 3.13 in both steady and modulated Taylor vortex flow. It is possible, however, 
to stretch the vortices by a considerable amount so that a becomes much less than 
3.13; to achieve this result, for example, the experimenter can slowly move the end 
cap which limits the height of the Couette apparatus while some new fluid enters 
the gap [22]. To illustrate an application of the initial value code we present some 
new results about stretched Taylor vortices. 

An oscillation of the whole vortex pattern between wavenumbers CI and 2~ is 
possible if during the initial part of the cycle, when the Reynolds number is high, 
a vortex pair breaks into two pairs, while during the final part of the cycle the vor- 
tices merge. This pattern oscillation is a clean way of studying both numerically and 
experimentally the detailed development of a Taylor cell because it does not depend 
on noise [23] or complicated end effects. We choose wavenumber c( = 2.5 at radius 
ratio q = 0.5, and examine modulation with aplitude e1 = 0.7 around the mean value 
s, = 78. The steady state linear stability theory predicts that vortices with 
wavenumbers u and 2a onset respectively at Re,, = 70.72 and 80.25. We expect to 
see an oscillation of the vortex pattern if the frequency of modulation is slow 
enough and assume T, = 6. If the frequency is too high, in fact, there is not enough 
time for the vortices to respond to the change in Reynolds number. The details of 
the vortex pair formation can be seen in Fig. 3a to 3j, where contour plots of the 
potential vorticity Z are displayed at successive times t during the part of the cycle 
in which the transition from wavenumber c( to 2a takes place. 
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a b c d e 

FIG. 3. Modulation of stretched vortices with wavenumber x = 2.5 at 7 = 0.75, E, = 0.4, &r = 78, and 
T, = 6. Sequence of contour plots of the potential vorticity Z at different times t during the formation 
of a new vortex pair. The calculation is performed with NC= 15, NF=4, and N,= 6000. The contour 
heights are AZ= Z,,,/ 10. The dotted line is the zero height: (a) t = 1,6, Re, = 109.03, Z,,, = 12.7; 
(b) t = 1.75, Re, = 108.14, Z,,, = 280; (c) t = 1.85, Re, = 107.13, Z,,, = 493; (d) t = 2.03, Re, = 104.52, 
Z max = 452; (e) t = 2.06, Re, = 103.99, Z,,, = 449; (f) t = 2.09, Re, = 103.43, Z,,, = 449; (g) t = 2.12, 
Re, = 102.85, Z,,, = 450; (h) t = 2.15, Re, = 102.25, Z,,, = 454; (i) t = 2.25, Re, = 100.06, Z,,, = 443; 
(j)f=3, Re,=78, Z,,,=l37. 

At the beginning of the cycle the Taylor cell remains symmetric for a while 
(Fig. 3a) because the vortices lag behind the drive. Then (Fig. 3b) the vortex cores 
and the layers of high vorticity close to the inner wall move away from the centre 
of the cell towards the outflow regions. The layers develop intrusions which extend 
towards the centre of the cell (Fig. 3~). Because of the progressive growth of a small 
patch of vorticity near the inflow, the intrusions make necks (Fig. 3d, e) and even- 
tually break away as new vortex cores (Fig. 3f). At first the new cores are smaller 
and closer to the inner cylinder than the original cores (Fig. 3g), but then they grow 
in size until the vortices reach their maximum strength (Fig. 3h, i). During the 
decay the pattern settles into its new symmetry (Fig. 3j). As the Reynolds number 
decreases the vortices weaken, until the reverse transition from 2a to a takes place 

581/95/l-13 
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b 

FIG. 4. Sequence of countour plots of the stream function Y’ as in Fig. 3. The contour heights 
are d!P= Y,,,,,/8: (a) Iv,,, = 0.082; (h) Y’,,,,, = 1.88; (c) Yy,,, = 4.44; (d) ‘P,,,,, = 3.64; (e) Y’,,,,, = 3.53; 

(0 ym,, = 3.39; (g) Y’,,, = 3.39; (h) Y’,,, = 3.24; (i) Yy,,, = 3.11; (j) Y,,, = 2.64. 

and the vortices merge together. The same temporal sequence is shown in Fig. 4a 
to 4j to illustrate the behaviour of the stream function cp. 

We have also found that temporally modulated stretched vortices exhibit sub- 
harmonic response. To examine this effect it is convenient to monitor the time 
dependence of the sign of U, computed at the point x = 0.5, [ = OS& where A = 2rc/c( 
is the cell wavelength. This point lies on the inflow and U, is negative, but if the cell 
breaks and the wavenumber becomes 2a then the point is on the outflow and u, 
becomes positive. We choose the parameters CI = 2.5, y = 0.5 and modulate the 
Reynolds number with er = 0.4, Re, = 78, and period T, = 6. Figure 5 shows that 
the stretched Taylor vortices respond subharmonically with period 2T,: the vortex 
cell breaks every other cycle, as evident from the change in sign of u,; during the 
first cycle displayed in the figure (from t = 0 to t = 6) the Taylor vortices do not 
break and U, is always negative; during the second cycle (from t = 6 to t = 12) the 
transition from c1 to 2~ takes place and U, becomes positive. During the final part 
of the second cycle the vortices weaken until they merge together at t E 10 and u, 
becomes negative again (its value is too small to be seen in the figure). This 
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l2 T 

FIG. 5. Subharmonic response of stretched vortices with a= 2.5 at q =OS, E, =0.4, zI =78, and 
T, =6; plot of U, vs time at the point x=0.5, [=O.SL with NC= 15, NF=& and N,=6000. 

behaviour is found to be stable in time and the calculation was repeated at different 
values of truncation NC and NF and at different number N, of time steps per cycle 
(NC= 10, NF=4, N,=3000; NC=15, NF=4, NT=3000 and 12,000; NC=15 
NF= 8, N, = 6000). It is also found that the subharmonic response exists only if the 
frequency of modulation is slow enough: at the same parameters of Fig. 5 the effect 
disappears if the period of modulation is T, = 4. 

Close inspection of the value of U, shows that at the end of the first cycle (in 
which the vortices remain stretched) U, is much bigger than at the end of the second 
cycle (in which the vortices break): we have u,= -0.8 x lop5 at t = T, = 6 and 
u,= -0.3 x 10m7 at t=2T, = 12. As a consequence the peak in the second oscilla- 
tion rises sooner than in the first one, and the vortex has time to break before the 
Reynolds number decreases again. The values of U, at the beginning of each cycle 
are orders of magnitude above the numerical noise but they are very small. It is 
therefore possible that the subharmonic response exists only within the frame of the 
perfect bifurcation, as represented by the calculation; in the experiments, as dis- 
cussed in Ref. [3], small imperfections in the transition region when U, = 0 have 
important consequences at low frequency modulation, and they may destroy the 
subharmonic effect if this is very sensitive to the precise value of U, at the beginning 
of each cycle. In any case, Fig. 5 shows the interesting fact that two different 
solutions for the flow are possible. 
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